命題II 定理II
每一個物體,它在一個平面上畫出的某一曲線上運動,且向或者不動的或者均勻地一直向前運動的點引半徑,[半徑]圍繞那個點畫出的面積與時間成比例,則物體被趨向同一個點的向心力所推動。
情形1 因每個在曲線上運動的物體,由作用在自身上的某個力使物體從直線路徑彎折(由定律I)。且那個力,它使物體從直線路徑彎折,圍繞不動的中心S在相等的時間畫出極小的相等的三角形SAB,SBC,SCD,等等,在位置B[力的]作用沿與cC平行的直線(由《幾何原本》第I卷命題XL,以及定律II),這就是,沿直線BS;在位置C沿與dD平行的直線,這就是,沿直線SC,等等。所以,作用總沿著趨向那個不動的點S的直線。此即所證。
情形2 且由諸定律的系理5,無論物體在其上畫出曲線圖形的表面靜止,或者它與物體,畫出的圖形及點S一起均勻地向前運動,并無差別。
系理1 在沒有阻力的空間或介質中,如果面積不與時間成比例,則力不趨向半徑的交點;而從那里向前(in consequentia)偏離,或者朝向運動發生的方向,只要畫出的面積被加速;但如果它被遲滯,則從那里向后(in antecedentia)偏離。
系理2 在有阻力的介質中,如果所畫出的面積被加速,力的方向從半徑的交點朝向運動發生的方向偏離。
解釋
物體可能由多個力合成的向心力推動。在這種情形命題的意義是那個由所有力合成的力趨向點S。而且如果其他力沿垂直于所畫出的表面的直線持續作用,這引起物體離開它運動的平面,但畫出的表面既不增加亦不減小,且所以[此力]在合力中被忽略。